Abiotic Environment I: Climate Dynamics and Plants (1 Sept 05)

- Geography of climate controlled by global, regional, and local processes
 - Solar energy and the earth’s heat balance – human alteration
 - Continental physiography
 - Geomorphology and vegetation cover – human alteration

- A feature of climate is variability at seasonal, interannual, and longer-scales. – human alteration

- Climate geography and temporal variability a prime determinant of vegetation structure and function (i.e. plant ecological processes)
 → next lecture

Biogeography: Continental Survey of Vegetation Types (6 & 8 Sept 05)

- Biomes described in terms of vegetation physiognomy
 - Ecosystem structure & function implicit

- Distribution primarily determined by climate
 - By thermal & moisture regimes
 - Wind and solar radiation regimes additionally important
 - Temporal variability key roles at seasonal & interannual+ scales

- In some instances, biome distribution & dynamics strongly set by:
 - Disturbance: fire, grazing
 - Soil (edaphic factors) → Coming in 2 weeks

- Repeated pattern of biome distribution from continent-to-continent
 - So strong ecological similarities
 - But important distinctions

- All biomes significantly impacted by human activities
 - Directly or indirectly
Functional Ecology I: Photosynthesis (13 Sept 05)

- Multiple pathways for CO₂ fixation:
 - C₃, C₄, CAM – each with ecological advantages
 - Morphological and biochemical features enable pathways
 - Advantages reflected in distribution of plant functional types

- In addition to biotic (structural and biochemical) constraints, photosynthesis limited by abiotic factors:
 - CO₂
 - Light
 - Temperature
 - Moisture → Next lecture
 - Nutrient availability → Next week

Functional Ecology II: Plant Water Relations (15 Sept 05)

- Water flows from soil through plant to atmosphere following negative water potential (Ψ) gradient
 - Powered by solar heating – drying atmosphere creates negative gradient
 - Plant controls over internal Ψ’s maintain negative gradient through plant
 - Supplies plant with needed water (for tissues, leaf thermal regulation, and psn) and nutrients

- Enabled by intricate plant morphology/anatomy & physiology
 - Transpiration affected by morphology and tight regulation of stomatal resistance
 - Xylem – morphology balances resistance and cavitation risk
 - Coping with water shortages: Wide range of plant morphological and physiological strategies evident in all environments, especially arid & semi-arid

- Soils and climate exert abiotic controls over water availability
 - Soil water holding capacity
 - PET vs precipitation – seasonality of water stress
Abiotic Environment II: Soils (20 Sept 2005)

- Soil formation is a function of
 - Parent material
 - Climate
 - Organisms – plants, microbes, fauna
 - Topography
 - Time

- Soil profiles reflect these controls over
 - Weathering rates
 - Movement (translocation) of salts (including Fe, Al), clays, humus
 - eluvial – illuvial zones
 - Organic inputs and decomposition rates
 - Rooting zone

- Plant growth (and community succession) controlled by soil processes:
 - Soil water availability
 - Soil nutrients – parent material weathering, organic matter mineralization, & ion exchange (binding)
 - Soil pH

Functional Ecology III: Nutrients (22 & 27 Sept 05)

- Nutrients play significant roles in a wide range of plant functions
 - Some required in only small amounts – micro vs. macronutrients

- Sources include weathering, atmospheric dep., decomposition, N-fixation
 - Some of these significantly altered by human activities (dust, N deposition,…)
 - N deposition consequences at plant, community, and ecosystem levels

- Nutrient limitation
 - N & P usually limiting – Different constraints on availability
 - Some environments micronutrients limiting
 - Liebig’s Law of the Minimum?
 - Physiological compensation
 - Species specific responses
 - Species interaction

- Range of plant adaptations
 - e.g., Roots – allocation, morphology and physiology