Management of novel ecosystems: are novel approaches required?

Timothy R Seastedt, Richard J Hobbs, and Katharine N Suding

Front Ecol Environ 2008; 6, doi:10.1890/070046

This article is citable (as shown above) and is released from embargo once it is posted to the *Frontiers* e-View site (www.frontiersinecology.org).

Please note: This article was downloaded from *Frontiers* e-View, a service that publishes fully edited and formatted manuscripts before they appear in print in *Frontiers in Ecology and the Environment*. Readers are strongly advised to check the final print version in case any changes have been made.
In this era, historically authentic, co-evolved biotic assemblages are increasingly rare; instead, we are confronted with a greater incidence of native and introduced species living under new environmental conditions and new or altered disturbance regimes (Suding et al. 2004; Hobbs et al. 2006; Figure 1). Chapin and Starfield (1997) use the term “novel ecosystem” to recognize the response of the boreal forest to current and anticipated climatic changes. In an attempt to address sustainability issues for Alaskan forests, Chapin et al. (2006) proposed four broad policy strategies: (1) enhance human adaptability, (2) increase ecosystem resilience by strengthening negative feedbacks and increasing options for adaptation, (3) advocate human activities to reduce climate change, and (4) facilitate transformation to new, potentially more beneficial ecosystem conditions. We believe that similar activities are warranted across the globe; here, we explore some of the management considerations required to increase ecosystem resilience and promote desirable outcomes.

In theory, adaptive ecosystem management offers tools and procedures for enhancing the resilience of desired states and facilitating transformations from undesirable states. However, such proactive responses are the exception to what is, in our opinion, a more common, reactionary approach to addressing the rapid transformation of landscapes. In arguing that systems are in novel states, we recognize that what constitutes an acceptable course of action remains open for scientific debate. Here, we provide several examples of “desirable” novel ecosystems and offer suggestions about management actions, recognizing that these are neither complete nor universally applicable.

Theoretical underpinnings of novel ecosystems

The overarching theoretical framework for understanding novel ecosystems, as well as a compelling argument for an adaptive management stance, comes from the “panarchy paradigm” developed by Holling and colleagues (e.g. Gunderson and Holling 2001; Holling 2001). This synthesis of ecosystem and hierarchy theories takes account of the fact that, over time, ecosystems pass through different states with different characteristics, and that some stages are much more vulnerable and less
resilient to change. When a disturbance affects a system in a sensitive state, restructuring occurs; the extent of this restructuring is influenced both by the state of the system and the spatial scale at which the disturbance occurs. Historically, these interactions produced sustainable cycles. However, in the era of new climates, new and modified chemical inputs, and new species, disturbances function as mechanisms for the generation of novel ecosystems, involving whatever abiotic and biotic materials are at hand. Holling (2001) concluded his overview by stating that “the era of ecosystem management via incremental increases in efficiency is over. We are now in an era of transformation, in which ecosystem management must build and maintain ecological resilience, as well as the social flexibility needed to cope, innovate, and adapt.”

Panarchy theory does not provide a road map for policy makers and managers, who have specific wants and needs. Other compatible and more intuitive conceptual models can be nested within the panarchy framework to help explain the novel ecosystem concept and provide additional focus. Landres et al. (1999) emphasize the importance of the magnitude and frequency of disturbance variables that drive the state and cycles of ecosystems. Managers understand that ecosystems are greatly influenced by fire, flood, disease outbreaks, and other disturbances, and many recognize the importance of these in determining ecosystem structure. Landres et al. (1999) defined the historical range of variability of ecosystems as “the ecological conditions, and the spatial and temporal variation in these conditions, that are relatively unaffected by people, within a period of time and geographical area appropriate to an expressed goal”. This goal is often the characterization of the current state of the ecosystem and landscape mosaic in terms of its biotic diversity and functional characteristics. The historical range of variability (HRV) characterizes ecosystems at defined spatial and temporal scales. Landres et al. (1999) recognized that some human activities were a part of such systems, but, in the past few centuries and particularly in the past few decades, human activities and indirect effects resulting from these activities have shifted what we consider to be natural ecosystems outside of their historical range of variability.

An era of increasingly rapid change

The overwhelming majority of environmental scientists agree that biotic change will dominate the 21st century (MA 2005), producing both novel climates (Williams et al. 2007) and “no-analog futures” (Fox 2007). Our ability to respond to this change remains limited. The compartmentalized nature of our educational systems and the reductionist approach to experimentation contribute to a deleterious lag time between acquisition of scientific knowledge and its use in management applications. Current environmental problems, often resulting from past mistakes (eg failure to control invasives before they became regional problems, failure to maintain fuel loads to mimic natural fire conditions) are consuming the time and budgets of managers, so that proactive management strategies to deal with emerging problems are relatively rare and certainly underfunded (Hobbs et al. 2003). Managers attempt to achieve success in management activities, but what constitutes success?

Factors that move terrestrial ecosystems outside of their historical range of variability include CO₂ and atmospheric nitrogen enrichment, altered disturbance regimes, climate change, invasions, local or global extinctions (particularly of keystone species or ecosystem engineers), and fragmentation effects. The historical ecosystem, as identified by the theoretical framework discussed above, possesses a range of biotic and abiotic characteristics (Figure 2). Directional shifts caused by climate change, fire suppression, enhanced CO₂, or atmospheric nitrogen deposition push the system outside of its historical range of geochemical conditions. Species additions or subtractions move the system to a new configuration. With changes in biotic composition, measurable changes in geochemical processes are also likely (eg Ehrenfeld 2003). Similarly, once a system has been removed from its historical range of variation due to abiotic changes, subsequent changes in species composition and biogeochemical cycling are almost certain. The causal mechanisms for change can be either biotic or abiotic in origin, but the outcome may be very similar.

In managing novel ecosystems, the point is not to think outside the box, but to recognize that the box itself has moved, and in the 21st century, will continue to
move more and more rapidly (Harris et al. 2006). While we can usually predict the impact of individual drivers on local ecosystems, the impacts of combinations of these changes, at varying levels of intensity across the globe, generate a lot of uncertainty. This presents a conundrum for managers and necessitates a more active partnership with researchers who are now engaged in attempts to measure impacts of complex changes on ecosystems. There is a compelling need to adopt a more dynamic framework that explicitly acknowledges and embraces change as a fundamental process that occurs in all ecological systems. Scientists must initiate and maintain dialogues with managers and policy makers, given that the ecosystems they manage have already been altered in ways that predispose them to further change and reduced resilience. Management activities should not only anticipate change, but should acknowledge that current systems have already been transformed and are in the process of transforming further.

Implications for management

Classical management of natural ecosystems often involves maintaining the system within the historical range of variability of abiotic and biotic drivers. Even in those ecosystems that have not experienced direct human alterations, the “indirect effects” of climate change, atmospheric chemistry changes, and introduced species have affected or will shortly transfigure these systems. Thus, traditional approaches may prove to be unproductive; HRV conditions no longer exist and systems have already been transformed and are in the process of transforming further.

![Figure 2](image-url) **Figure 2.** Creation of novel ecosystems via biotic or abiotic change (modified from Suding et al. 2004). The “range of variability”, as discussed by Landes et al. (1999), and the adaptive four-phase cycle of Holling (2001) of a natural ecosystem are collapsed into the range of values found in zone A. (a) An ecosystem is altered by directional environmental drivers (A→B) or the addition or loss of an important species (A→C). (b) Once in the new state (either B or C), internal restructuring due to new biotic and abiotic interactions further alters community composition through changes in abundances or species losses, and through changes in biogeochemical interactions.

Invasive species are likely to have an increasingly important role in grassland dynamics. While invasive species can be quantified as drivers or “passengers” of change in communities (MacDougall and Turkington 2005), we suggest that these species are also passengers and drivers in novel ecosystems. Major economic and ecological damage has been inflicted by invasive species in grasslands and rangelands, and expenditures to control these species with herbicides or other proactive management techniques are also substantial. However, when the management focus is only on the invader, native species or even desirable non-native species may not necessarily be beneficiaries of management strategies. For instance, in southern California grasslands that have been previously overgrazed, control of a particularly problematic invader, artichoke thistle (*Cynara cardunculus*), may only be a first step in restoration once the native component has been almost completely removed (Figure 3). Within the next few years, millions of hectares of rangeland in the US that are dominated by several species of invasive knapweeds (*Centaurea* spp) will probably be replaced by new dominant plant species, as the knapweeds are reduced in density by biological control agents (Story et al. 2006; Seastedt et al. 2007). The few studies that have...
monitored vegetation response to these declines suggest that other non-native species will increase in abundance as a result of the demise of the *Centaurea* spp (Denslow and D’Antonio 2005; Bush et al. 2007; Figure 4).

Managing under no-analog conditions

In the past, managers have attempted to eliminate processes or components that did not fit the general perception of a desirable system. With these new challenges, managers must re-examine their perceptions and develop management strategies to promote ecosystems that are both feasible and resilient. As indicated in Figure 2 and by an increasing number of examples, removing unwanted species, or the consequences of unwanted species (such as high fuel loads or high nutrient loading from human activities), will not necessarily restore the ecosystem to its historical state and may not move the system to a desirable, new state. While climate change may impose limitations on our ability to restore the biogeochemical configuration of ecosystems, reversing or negating trends caused by other directional drivers is possible. If changes produce geochemical conditions that cannot be reversed without unacceptable cost, stakeholders must select from among those management activities that can enhance resilience and provide the biotic structure and ecosystem services they are willing to accept and support.

While emphasizing that “one size does not fit all”, resource managers must either find species capable of persisting in spite of these directional shifts, or must identify mechanisms that can provide sufficient resilience to allow for the persistence of desired species in the face of these changes. Here, we present an example of a non-traditional management strategy that has maintained a relict, desirable native community despite the absence of a key driver, and of a novel grassland generated by a less-than-traditional restoration effort. These examples demonstrate that biotic and abiotic manipulations can be used to generate “what we want” under conditions outside the HRV of the pre-existing systems.

Maintaining a relict tallgrass prairie without frequent fire

At the base of the Front Range of Colorado, a relict tall-grass prairie composed of thick stands of big bluestem, switchgrass, and Indian grass can be found on portions of land owned and managed by the city of Boulder. These species generally require 800 mm of precipitation per year to maintain dominance, yet, at this site, they persist in an area that receives about 500 mm of precipitation. This grassland is arguably the rarest terrestrial ecosystem type in Colorado. The fire return interval for this region was estimated at one fire every 7–12 years (Veblen et al. 2000), and fire is viewed as essential to the maintenance of this type of grassland (eg Knapp et al. 1998). These systems are also vulnerable to almost all of the previously discussed drivers of environmental change.

Burning portions of this area is now considered unacceptable due to an adjacent highway. For more than 20 years, a bottomland tallgrass site has been maintained by short-duration, intensive spring grazing by cattle. The animals seek out and consume whatever is green on these sites and avoid eating the standing dead material from the warm-season grasses. Importantly, such green plants include numerous non-native species, including Canada
thistle, and a number of cool-season grasses. The cattle heavily graze the cool-season plants and trample the previous year's standing dead vegetation, exposing the soil surface to sunlight. Following the removal of the animals in late May, the trampling allows for the rapid emergence of warm-season grasses into full sunlight. These species then dominate the water, light, and nutrient resources of the site. While fecal material and urine from the cattle increase plant-available nitrogen, the timing of the fertilization activity produces a lush stand of tallgrass species instead of stimulating more nitrogen-demanding cool-season grasses or weedy species. To date, this unconventional management approach has sustained the tallgrass species, in marked contrast to traditional effects of grazing on tallgrass prairie (e.g., Towne et al. 2005), where year-round or growing-season grazing activity reduces the abundance of these plant species.

Revegetating a gravel pit

Near the area discussed above, gravel was mined from a ~100 hectare bottomland site (originally a relict tallgrass area) for over 40 years. State regulations required that the site be revegetated, and rocks from construction sites were used to refill the excavations. The topsoil removed from the site prior to the extraction of gravel was used in this revegetation. The fact that much of this soil had been stockpiled for an unknown interval meant that what was returned and spread over the surface was very different from what had originally been removed. Measurements of organic matter and organic nitrogen indicated that the soils on the revegetated site were more characteristic of arid shortgrass steppe than of a mesic, bottomland tallgrass prairie (Cherwin et al. in press).

Only native grasses were seeded onto this site in 1998. Following the seeding, the area experienced a relatively wet year (128% of the 30-year average), while the next 3 years brought 79%, 90%, and 69% of average precipitation, respectively. Foliage production in this area was severely limited during this 3-year drought. Low organic matter soils and low precipitation during the early stages of grass recovery would have doomed a restoration effort focused at rebuilding a tallgrass prairie. However, the seed mixture used nine grass species whose moisture demands spanned a 500-mm rainfall gradient. The plant community that emerged (Figure 5) was dominated by a warm-season plant, salt sacaton (*Sporobolus airoides*), a species usually abundant only in alkaline or dry saline soils. To our knowledge, no such soils occur naturally in this area. Salt sacaton was solely responsible for about half of the vegetation cover. Other warm-season grasses common in mixed-grass and shortgrass steppe provided another 25% of relative vegetation cover. Particularly remarkable was the fact that planted species constituted over 90% of the vegetation cover and the site appeared largely resistant to invasions by other native and non-native plants (Cherwin et al. in press).

This successful revegetation effort resulted from the selection of a seed source containing representatives of short-, mixed-, and tallgrass species. Had the original soils been in place and had precipitation been adequate, a prairie dominated by tallgrass species might have emerged. Instead, the resulting vegetation is dominated by mixed-grass prairie species capable of surviving a 3-year drought. The diverse seed mix used by the revegetation team interacted with the climate conditions and unusual soil characteristics to select the community type and produced an impressive, albeit novel, grassland community.

The bottom line

In the first example above, managers used a spring-only grazing regime to maintain a tallgrass relict without frequent fire. In the second example, a low-budget soil and a creative seed mix produced a native grassland that contained a “new” dominant plant species, and was largely devoid of invasive species. This grassland will now provide locally important ecosystem services, such as enhancement of water quality in an adjacent stream. In addition, carbon and nitrogen will be sequestered as these soils increase in carbon and nitrogen content, and the area could be used as a platform for desired species introductions, especially those that favor a low nitrogen environment. These successes involved recognition of the
fact that traditional management approaches could not be used and/or were not likely to achieve management goals. In the first example, we have a novel management approach maintaining a highly desirable relict system which appears capable of persisting outside its HRV, and in the second example, the managers used an “uncertain climate seed mix” to generate a novel ecosystem that appears to be both drought and weed resistant.

Under novel conditions, all management activities represent experiments, and more proactive scientist–manager collaborations are needed to develop procedures for achieving management goals for these systems (Landres et al. 1999). Our interactions with managers have revealed that this group is already besieged by environmental problems. Monitoring, the cornerstone of ecosystem management, has yet to achieve its true level of importance. Furthermore, managers need protection from the public and policy makers, who are quick to condemn when activities designed to produce long-term results do not produce short-term benefits. Scientists provide an appropriate interface between stakeholders and managers, and function as educators for both groups.

The recognition that novel ecosystems require novel management approaches and goals does not imply that “anything goes”. Our conclusions could be interpreted as espousing a free-for-all of outlandish, stab-in-the-dark approaches in order to achieve desired conditions, without due consideration of the probable consequences. Clearly, this is not our intent. However, we must consider how to tackle this new and rapidly changing situation. Outlandish approaches are more likely to be adopted if we ignore the problem than if we engage in open debate about it. We would be foolish to suggest that there are simple answers.

A search for general rules that can be used to manage novel ecosystems is likely to be a long and possibly unproductive exercise. A logical approach would be to maximize genetic, species, and functional diversity wherever possible, to increase the viability of communities and ecosystems under uncertain climate regimes. Monitoring responses to any action, or lack of action, remains the key activity. In the above examples, management actions produced what were perceived as desirable outcomes by manipulating mechanisms that enhanced desirable system components, rather than by removing or suppressing undesirable species. Although this statement may appear obvious to ecologists, it has not necessarily been translated into the activities that currently dominate the time and financial budgets of land managers. In addition to enhanced monitoring, attention to a rigorous “experimental” design, including reference areas wherever possible, is appropriate if not essential to a defensible, informative, and publicly acceptable management program for novel systems. Awareness among stakeholders, policy makers, and managers of the realities of current and future ecosystem changes is essential to generate management strategies that have positive rather than neutral or negative outcomes. The participation of ecologists in adaptive management activities has been advocated for over a decade (e.g. Christensen et al. 1996), but this call to action deserves to be re-emphasized due to the complexities and urgency of global environmental changes affecting the structure and function of ecosystems. If we are to effectively manage existing and potentially novel ecosystems, we need to put some serious thought into what the goals and approaches should be.

Acknowledgements

We thank T Veblen and N Breiter for use of their photographs. L Riedel provided input on City of Boulder management activities. We thank N Breiter, V Cramer, and K Cherwin for reviewing an earlier draft of this manuscript.

References

